OGF Educators Meeting

in Honor of

Douglas Anderson

Saturday, September 10, 2022
Bascom Palmer Eye Institute
Miami, FL

Co-Chairs:
Mark Dunbar, Murray Fingeret,
John McSoley, V. Michael Patella

Session 1 - Structure/Function
8:00 am Introduction and Welcome
8:10am – 8:50am How changing structural and functional assessments have affected my decision making in glaucoma over 40 years - Richard Parrish
8:50-9:00am Discussion
9:00am – 9:40am Optic Nerve Evaluation - Douglas Anderson
9:40am -10:00am Discussion
10:00-10:30 Break

Session 2 - A Look at Glaucoma
10:30-11:10am Natural history and pathological processes of the glaucomas - Douglas Anderson
11:10-11:20 am Discussion
11:20 – 12:00 Glaucoma decision making - Elizabeth Hodapp
12:00 – 12:10 Discussion
12:10-1:10pm Lunch

Session 3 - Therapy
1:10-1:50pm Glaucoma Medical and Laser Therapy – What has changed in the last decade - David Greenfield
1:50-2:00pm Discussion
2:00pm – 2:40pm Glaucoma Surgical Care – What has changed in the last decade - Steve Gedde
2:40-2:50pm Discussion
2:50-3:20pm Break

Session 4 - Clinical Trials
3:20pm-3:50pm The Normal Tension Glaucoma Treatment Study - Douglas Anderson
3:50-4:00pm Discussion
4:00-4:40pm How have the Glaucoma Clinical Trials Changed How I Practice - Paul Palmberg
4:40-4:50 Discussion
4:50-5:20pm An Update on Perimetry - Murray Fingeret, Douglas Anderson, V. Michael Patella
5:20pm – 5:30Discussion
5:30pm Reception & Dinner
Novecento- Brickell
1414 Brickell Ave.
Miami, Florida 33131
Douglas R. Anderson, AB, BS, MD, FARVO, was born in Memphis, Tennessee in 1938, the son of William Arnold Douglas Anderson, MD (a world-renowned pathologist and text-book author) and Harriott Isabelle Gates, MD (active in the pioneering Red Cross blood-banking program during World War II).

The family moved to Florida in 1953, where his father became the founding chairman of the Department of Pathology of the new University of Miami School of Medicine. After completing high school, he studied at the University of Miami College of Arts and Sciences, where he earned AB *magna cum laude* (Chemistry, Philosophy) and BS *magna cum laude* (Biology, Mathematics, Physics) degrees. He then earned an MD degree from Washington University (1962), which included extracurricular research with the electron microscope and a rotating Internship at the University Hospitals of Cleveland (1962-3). Douglas held the rank of Surgeon (Lt. Commander) with the US Public Health Service assigned as a research Staff Associate to the National Cancer Institute (1963-5), studied as an Ophthalmology Resident at the University of California San Francisco (1965-8), and completed his training with a Glaucoma Research Fellowship at the Howe Laboratory of Massachusetts Eye and Ear Infirmary (1968-9).

He then joined the faculty of the Bascom Palmer Eye Institute of the University of Miami School of Medicine (active 1969-2016, now Professor emeritus). His research interests centered on glaucoma, pathogenesis of optic nerve damage, clinical evaluation of the optic nerve and of visual fields, and principles behind quantifying progression in cases of glaucoma.
Among his professional honors are: a gold medal for best scientific exhibit at the annual meeting of AAOphOto (1972); Robert N. Shaffer Lecturer, AAO (1987); Jackson Memorial Lecturer, AAO (1987); Mildred Weisenfeld Award, ARVO (1997); Georg von Bartisch Medal for contributions to Glaucoma Research, Dresden University (2002); International Glaucoma Review Global Glaucoma Special Recognition (2002); Hans Goldmann Medal (2003); International Perimetric Society Honored IPS Lecturer (2004); Optometric Glaucoma Society Honoree (2004), Distinguished Faculty Scholar Award, University of Miami (2007); Tadeusz Krwawicz Gold Medal [jointly awarded by the International Council of Ophthalmology, the World Congress of Ophthalmology, and the Polish Ophthalmological Society] (2008); Optometric Glaucoma Society Founders’ Award (2011), Karen Walker-Brandreth Award, UC Berkeley School of Optometry (2012); a Life Achievement Honor Award, American Academy of Ophthalmology (2015); and the American Glaucoma Society President’s Award (2010 and 2020).

He has been author or co-author of several books, which include particularly a series on manual kinetic perimetry and automated static perimetry. He published peer-reviewed scientific reports on such subjects as microanatomy of the optic nerve and its vascular supply, the first demonstration of IOP-induced alteration of optic disc physiology (i.e., axonal transport), the clinical characteristics glaucomatous cupping (with Ralph Kirsch, MD), relief of acute angle closure by corneal indentation, the embryology of human trabecular meshwork and its abnormal development in congenital glaucoma, a new statistical method to determine sensitivity and specificity of a diagnostic test without an external ("gold") standard, in vivo demonstration of normal and abnormal vascular autoregulation in human optic disc, laboratory studies on the likely role of pericytes in capillary control of neuro-retinal circulation, and the use of OCT in glaucoma. He collaborated in the initial study of 5-FU in glaucoma surgery, was on the executive committee and a leader of the optic disc reading center for the Ocular Hypertension Treatment Study, and was co-PI (with Stephen Drance, MD, OC) of the 15-year multi-center study of Normal-Tension Glaucoma.

Among the notable professional contributions:
Described the recognition of glaucomatous cupping by attention to the vertical meridians of the optic nerve head.
Demonstrated interruption of rapid axonal transport in the optic nerve, and later that the blockage was not caused by mechanical mechanisms.
Wrote several books on clinical testing of visual fields.
Demonstration of normal and abnormal regulation of blood flow in the human optic nerve.
Laboratory studies of the potential role of pericytes in autoregulation of blood flow.
Study of the normal embryonic development of the human trabecular meshwork and the abnormality that occurs in congenital glaucoma.
Leader of the multicenter randomized clinical trial that showed that intraocular pressure plays a role in normal-pressure glaucoma, and the benefit of lowering pressure.

He married Wirtley Anne Raine in 1964, and they have three children: John Douglas Anderson (17 November 1967), Wendy Anne Anderson (Hoffhines) (31 October 1968), and Michael Allen Scott Anderson (27 July 1973).

He is an Honorary Life member of the Optometric Glaucoma Society.
When asked to speak at this program, Paul Palmberg responded as follows:

Dear Murray, Mark, John and Mike,

Of course, I would be delighted to attend and speak at the Foundation meeting held in honor of Douglas Anderson. Since I am in my 42nd year of remedial Fellowship with Dr. Anderson, trying to make up for his decision to invite me to interview for the BPEI Faculty, this would give me an opportunity to express to him my gratitude for taking a chance on a rookie to join his team.

I recall that I had an opportunity to speak at the Banquet Bascom Palmer gave in his honor many years ago. In it I recalled my early experience in Miami in asking him about things related to living here. I told him that we had cockroaches and he gave me some boric acid powder to sprinkle below the drawers in our kitchen. It worked! But then we got red ants. I told him that we had gotten rid of the cockroaches but that... He broke in and said "Red ants." He then gave me something for getting rid of them. Later, we found that we needed to replace a stem on a hot water faucet and soon found that no local hardware store had those parts. I asked him about it and he said "Stern Brothers Plumbing, 8920 Bird Road." Sure enough, Stern Brothers were manufacturing outdated plumbing parts and had what I needed! Doug did not tell me that a few weeks earlier he had gone to half a dozen hardware stores until he found the elusive source!

The same sort of thing happened several times when I asked if he knew anything about such things as how the optic nerve was damaged in glaucoma or how the mechanism of congenital glaucoma. He would just slightly frown and hand me a reprint of his seminal article on the subject, which somehow had been a missing part of my training as a glaucoma specialist in St. Louis.

He is SO modest that when we drove to Sarasota one year for ARVO and I asked him if he wanted to have dinner that night, he just said that he had a meeting. I was unaware that he was becoming the President of ARVO. When I was appointed to a Study Section of the NEI I told him that I was happy about that opportunity to review cutting edge research proposals he did not mention that he was on the NEI Advisory Council that reviews the results of the Study Sections and makes final decision.

Doug looked for opportunities to affirm and encourage me and later Rich Parrish and all who followed as Fellows or Faculty in Glaucoma at BPEI. He asked me to see a patient with him to perform gonioscopy as he said he thought I was better at it than he was. In 1982, I asked him to watch me perform gonioscopy on a patient I found had plateau iris syndrome and to tell me if he thought that the hump sign was due to forward rolled ciliary processes as I hypothesized. He said, I think that you are right since you are pushing so hard on the goniopism that the last roll of the iris is draping over individual ciliary processes.

Doug's parents were both remarkable people. Doug's parents moved the family to Miami from Milwaukee when his father became Chair of Anatomy at UM. He had written a popular medical school textbook. His mother had been in charge of blood banks in World War II.

Doug finished undergraduate studies at UM in record time, I think under 3 years, and attended Medical School at Washington University in St. Louis. He had mentioned to Dr. Norton that he would like to return to Miami after training. While Doug was away in his Residency at the University of California in San Francisco, fortuitously Don Gass came to Dr. Norton and said that he would like to devote his career to medical retina, combining retinal photographs with the new technique of fluorescein angiography and then pathologic studies of any donated eyes of patients he would follow. Dr. Gass had trained in ocular pathology at the Armed Forces Institute of Pathology. But, he said, to do that he had to get rid of the glaucoma patients who were filling up his clinic. Dr. Norton said to Dr. Gass (according to Dr. Gass who told me this story), that he would call Robert Shaffer in San Francisco and ask him to show a special interest in Doug Anderson to entice him to want to go into glaucoma. Indeed, that seems to have worked, as Doug took a Fellowship at Mass Eye and Ear with Drs. Chandler and Grant, also fulfilled his military obligation with some Public Health work in which he learned electron microscopy and returned to Miami as the first full time Glaucoma Specialist. To follow were his work in electron microscopy of the optic nerve head, the seminal work on axoplasmic flow blockade in glaucoma, the work on the embryology of anterior chamber angle, the participation with Mike Patella and others on Humphrey Visual Field testing and teaching its interpretation, and the Normal Tension Glaucoma Treatment Trial.

Doug trained well over 100 Glaucoma Fellows and empowered them on their way to outstanding careers. Harry Quigley, Rich Parrish, Don Budenz, Francisco Fantes, Dale Heuer, Lee Alward, Greg Skuta, Alana Grajewski, and Martha Wright were among the early ones. They in turn have trained perhaps 20% of the glaucoma specialists in the US. Glaucoma specialists have a short gestation period, so we multiply like rats! At any AGS or AAO Glaucoma Sub-specialty Day many of Doug's academic progeny are in leadership and giving featured lectures. The existence of the AGS owes much to the Annual Northamerican Glaucoma Learning Ensemble (ANGLE), a think tank meeting that he and Jonathan Hershler began, and which morphed into the AGS, which Doug served as a founding member and an early President.

And that is probably only the half of it.

Paul Palmberg
David Greenfield, MD

David S. Greenfield, MD is Professor of Ophthalmology and serves as the Douglas R. Anderson Distinguished Chair in Ophthalmology, Vice Chair for Academic Affairs for the Department of Ophthalmology, Co-Director of the Glaucoma Service, and Director of the Glaucoma Fellowship Program at the Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL. He earned his medical degree from the New York University School of Medicine in 1990 and completed his residency at the New England Eye Center, Tufts University School of Medicine, Boston, in 1994. Dr. Greenfield completed a 1994-5 Heed Fellowship in Glaucoma and a 1995 Heed-Knapp Fellowship in Neuro-Ophthalmology at the Bascom Palmer Eye Institute, University of Miami School of Medicine. He previously joined The New York Eye & Ear Infirmary in 1996 as Clinical Assistant Professor of Ophthalmology and Neurology.

Dr. Greenfield is a clinician, surgeon, and scientist, and has held prestigious leadership positions throughout Ophthalmology. Dr. Greenfield is the Past President of the American Glaucoma Society and the American Glaucoma Society Foundation (2014-16). He is the co-founder of the International Society for Imaging in the Eye (ISIE) and served as Secretary-Treasurer from 2002 – 2007, and is the Executive Vice President and co-founder of The Florida Glaucoma Society. Dr. Greenfield is a member of the editorial boards of Journal of Glaucoma and International Glaucoma Review, and has served as the Executive Editor of American Journal of Ophthalmology and Associate Editor of Ophthalmic Surgery Lasers and Imaging. Dr. Greenfield has served as past Chair of the AGS Scientific Program Committee, Bylaws and Strategic Planning Committees, and member of the AAO Glaucoma Subspecialty Day Committee, Technology Assessment Committee, and EyeCare America Glaucoma Education Committee. Dr. Greenfield has served as Co-Chair of the Glaucoma Subspecialty Day of the American Academy of Ophthalmology (2003-4), and was awarded the 2010 AGS Clinician-Scientist Lectureship, 2011 American Academy of Ophthalmology Senior Achievement Award, 2015 American Academy of Ophthalmology Robert N. Shaffer Lectureship, and 2016 AAO Secretariat Award.

Dr. Greenfield has taught and published extensively in all aspects of glaucoma diagnosis, monitoring, and therapy and has an H-index impact factor of 46. His research interests include optic disc and retinal nerve fiber imaging, reflectance properties of the retinal nerve fiber layer, normal-tension glaucoma, bleb-related ocular infection, and complex glaucoma filtration surgery. He was the recipient of a National Eye Institute consortium grant studying advanced imaging technology in glaucoma, and received continuous funding from the NIH from 1999-2013. He has delivered numerous guest lectures and named lectures nationally and internationally, and has published over 300 original scientific papers, abstracts and book chapters with an H-index impact factor of 53. He has trained numerous clinical and research fellows, many of whom hold distinguished academic positions worldwide.
Elizabeth Hodapp, MD
Dr. Elizabeth Hodapp obtained her medical degree from Harvard Medical School and did her ophthalmology residency and glaucoma fellowship at Barnes-Jewish Hospital-Washington University. She is practicing at Bascom Palmer Eye Institute where she is an associate professor of clinical ophthalmology. She is an esteemed author and is a co-author with Drs. Parrish and Anderson of the important text, Clinical Decisions in Glaucoma.

Steven Gedde, MD
Steven J. Gedde, MD, is Professor of Ophthalmology and Vice Chair of Education at the Bascom Palmer Eye Institute. He received his medical degree from Vanderbilt University School of Medicine. Dr. Gedde completed his residency training in ophthalmology at Wills Eye Hospital, where he also served as Chief Resident. His clinical glaucoma fellowship was done at the Bascom Palmer Eye Institute.

Dr. Gedde has lectured nationally and internationally. He has authored or coauthored more than 350 articles, book chapters, and abstracts. He is Editor of the second edition of Curbside Consultation in Glaucoma: 49 Clinical Questions, and he has served on the Editorial Boards for Ophthalmology, Journal of Academic Ophthalmology, EyeNet, Ocular Surgery News, Ophthalmology Management, and EyeWorld. Dr. Gedde has been listed among America’s Top Doctors, Best Doctors in America, and Florida Super Doctors. He received an Achievement Award in 2006, Senior Achievement Award in 2012, and Secretariat Award in 2017 from the American Academy of Ophthalmology. He served as the Residency Program Director at the Bascom Palmer Eye Institute from 1999 to 2021. He was selected as the Excellence in Health Care Educator of the Year in 2009, and he received the Straatsma Award for Excellence in Resident Education in 2016. Dr. Gedde is a member of the American Ophthalmological Society. He has served on the Board of Directors of the American Glaucoma Society and the American Board of Ophthalmology since 2017. He is Chair of the Glaucoma Preferred Practice Pattern Panel. Dr. Gedde is a study chairman for the Tube Versus Trabeculectomy (TVT) Study and Primary Tube Versus Trabeculectomy (PTVT) Study, multicenter randomized clinical trials comparing tube shunt surgery with trabeculectomy.

Richard K. Parrish, II, MD
Richard K. Parrish, II, MD, is the editor-in-chief of the American Journal of Ophthalmology (AJO) and has served as president of the American Ophthalmological Society. A widely published author has delivered 35 named lectures and served as a member of the editorial board of Archives of Ophthalmology. His academic career includes more than 100 peer-reviewed original scientific publications. In 1994, he was named Vice-Chair and a Principal Investigator of the National Eye Institute’s (NEI) landmark Ocular Hypertension Treatment Study (OHTS and OHTS II) and served in this capacity for OHTS III, a 20-year follow-up investigation. He was the Project Chairman of the NEI’s Fluorouracil Filtering Surgery Study, the first multicenter randomized clinical trial in glaucoma surgery in the United States and served as the Principal Investigator of the Optic Disc Reading Centers for the NEI-sponsored OHTS and OHTS II, the Collaborative Initial Glaucoma Treatment Study, and the Advanced Imaging for Glaucoma.
Paul Palmberg, MD, PhD

Paul Palmberg, MD, PhD, Professor of Ophthalmology at the Bascom Palmer Eye Institute, University of Miami School of Medicine. He received MD and PhD in Biochemistry degrees from Northwestern University, and completed a Residency in Ophthalmology, Chief Residency, Clinical and Research Glaucoma Fellowships at Washington University in St. Louis. Dr. Palmberg introduced the term “target pressure” in 1988 and has helped define the relationship between intraocular pressure and visual field progression, receiving the World Glaucoma Association Award (world glaucoma prize) in the year 2000 for the Advanced Glaucoma Intervention Study (AGIS) paper that showed that sufficient lowering of pressure can halt glaucoma damage in most cases. He has investigated the use of antimetabolites in filtering surgery since 1982, and developed techniques to avoid or treat hypotony maculopathy, painful, failing or leaking blebs, and techniques to make aqueous drainage implant surgery safer. Dr. Palmberg gave the Shaffer Glaucoma Lecture at AAO in 2005, and received the AAO Lifetime Honor Award, AGS Surgery Day Lecture in 2014 and AGS Educator Award in 2018, twice Professor of the Year at the Bascom Palmer Eye Institute, Past-President of the Miami Ophthalmological Society and the Pan-American Glaucoma Society. Dr. Palmberg has authored or coauthored 97 journal articles and 12 book chapters.
We invite you to attend the Optometric Glaucoma Society’s 20th Annual Meeting in San Diego, CA.

<table>
<thead>
<tr>
<th>Tuesday, October 25, 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqua Ballroom</td>
</tr>
<tr>
<td>7:20-7:50am Breakfast (opportunity to visit vendor exhibits)</td>
</tr>
<tr>
<td>7:50am Welcome</td>
</tr>
<tr>
<td>Session 1</td>
</tr>
<tr>
<td>8:00-8:30am Detecting glaucoma in high myopia</td>
</tr>
<tr>
<td>8:30-8:40am Discussion and Questions</td>
</tr>
<tr>
<td>8:40-9:10am Factors influencing macular structure-function concordance in glaucoma</td>
</tr>
<tr>
<td>9:10-9:20am Discussion and Questions</td>
</tr>
<tr>
<td>9:20-9:50am Space Associated Neuro Syndrome (SANS)</td>
</tr>
<tr>
<td>9:50-10am Discussion and Questions</td>
</tr>
<tr>
<td>10:00-10:30am Morning Break (opportunity to visit vendor exhibits)</td>
</tr>
<tr>
<td>Session 2</td>
</tr>
<tr>
<td>10:30-11am Remote visual field testing: tablets, virtual reality headsets and secure internet web sites</td>
</tr>
<tr>
<td>11:00-11:10am Discussion and Questions</td>
</tr>
<tr>
<td>11:10-11:40am Is gaze tracking useful with perimetry?</td>
</tr>
<tr>
<td>Session 3</td>
</tr>
<tr>
<td>1:15-1:30pm Glaucoma Neuroprotection</td>
</tr>
<tr>
<td>1:30-1:40pm Discussion and Questions</td>
</tr>
<tr>
<td>1:40-2:10pm Update on IOP-independent Glaucoma Treatments</td>
</tr>
<tr>
<td>2:10-2:20pm Discussion and Questions</td>
</tr>
<tr>
<td>2:20-2:45pm Smoking and Glaucoma</td>
</tr>
<tr>
<td>2:45-2:55pm Discussion and Questions</td>
</tr>
<tr>
<td>2:55-3:25pm Afternoon Break (opportunity to visit vendor exhibits)</td>
</tr>
<tr>
<td>Session 4</td>
</tr>
<tr>
<td>3:25-4:15pm Clinical Case Presentations</td>
</tr>
<tr>
<td>4:15-4:45pm What is next for glaucoma?</td>
</tr>
<tr>
<td>4:45-5:15pm Panel Discussion</td>
</tr>
<tr>
<td>5:15-6:15pm Reception</td>
</tr>
<tr>
<td>6:15-9pm Dinner & Banquet</td>
</tr>
<tr>
<td>OGS/AAO Joint Symposium</td>
</tr>
<tr>
<td>Wednesday, October 26, 2022</td>
</tr>
<tr>
<td>8:30-9am Visual field progression, what procedures should be used?</td>
</tr>
<tr>
<td>8:30-9am Deep Learning Strategies to Diagnose and Monitor Glaucoma</td>
</tr>
<tr>
<td>9:25-9:40am Panel Discussion</td>
</tr>
</tbody>
</table>
The Optometric Glaucoma Foundation would like to acknowledge the generous support of the following Sponsors.

Elite

![Bausch & Lomb Logo]

Leadership

![Aerie Logo]

![Alcon Logo]

![Topcon Healthcare Logo]

SEEING EYE HEALTH DIFFERENTLY
Supporter

- Allergan
- CATS
- GLAUKOS
 Transforming Glaucoma Therapy
- HAAG-STREIT GROUP
- HEIDELBERG ENGINEERING
The Optometric Glaucoma Foundation would like to acknowledge the companies that have provided medical educational grants.

Aerie Pharmaceuticals

Alcon

Bausch + Lomb

Santen

Zeiss
YOUR GUIDE FOR GLAUCOMA DIAGNOSTICS

THE HOOD REPORT FOR GLAUCOMA

MAESTRO2

✓ OCT and true color* fundus photography
✓ Fully automated image capture
✓ Novel report simplifies & accelerates glaucoma diagnostic decision-making
✓ Retinal thickness analysis (RNFL/GCL) + optic nerve metrics in one scan

*True, full color fundus image simultaneously captured with white light, 24-bit color.

MCA #4860
©2022 Topcon Healthcare | topconhealthcare.com
INDICATION

VYZULTA® (latanoprostene bunod ophthalmic solution), 0.024% is indicated for the reduction of intraocular pressure (IOP) in patients with open-angle glaucoma or ocular hypertension.

IMPORTANT SAFETY INFORMATION

- Increased pigmentation of the iris and periorbital tissue (eyelid) can occur. Iris pigmentation is likely to be permanent.
- Gradual changes to eyelashes, including increased length, increased thickness, and number of eyelashes, may occur. These changes are usually reversible upon treatment discontinuation.
- Use with caution in patients with a history of intraocular inflammation (iritis/uveitis). VYZULTA should generally not be used in patients with active intraocular inflammation.
- Macular edema, including cystoid macular edema, has been reported during treatment with prostaglandin analogs. Use with caution in aphakic patients, in pseudophakic patients with a torn posterior lens capsule, or in patients with known risk factors for macular edema.
- There have been reports of bacterial keratitis associated with the use of multiple-dose containers of topical ophthalmic products that were inadvertently contaminated by patients.
- Contact lenses should be removed prior to the administration of VYZULTA and may be reinserted 15 minutes after administration.
- Most common ocular adverse reactions with incidence ≥2% are conjunctival hyperemia (6%), eye irritation (4%), eye pain (3%), and instillation site pain (2%).

Pivotal study designs: Two Phase 3, randomized, multicenter, parallel-group studies, APOLLO and LUNAR, evaluating noninferiority of once-daily VYZULTA vs twice-daily timolol maleate 0.5% in patients with open-angle glaucoma or ocular hypertension. Primary endpoint was IOP measured at 9 assessment time points in study eye. APOLLO (VYZULTA, n=284; timolol, n=133) and LUNAR (VYZULTA, n=278; timolol, n=136).

FOR MORE INFORMATION, PLEASE SEE BRIEF SUMMARY OF FULL PRESCRIBING INFORMATION ON ADJACENT PAGE.
Iris color change may not be noticeable for several months to years. Typically, the brown pigmentation are not known.

5 WARNINGS AND PRECAUTIONS

5.1 Pigmentation

VYZULTA® (latanoprostene bunod ophthalmic solution), 0.024% may cause changes to pigmented tissues. The most frequently reported changes with prostaglandin analogs have been increased pigmentation of the iris and periorbital tissue (eyelid).

Pigmentation is expected to increase as long as latanoprostene bunod ophthalmic solution is administered. The pigmentation change is due to increased melanin content in the melanocytes rather than to an increase in the number of melanocytes. After discontinuation of VYZULTA, pigmentation of the iris is likely to be permanent, while pigmentation of the periorbital tissue and eyelashes changes are likely to be temporary in most patients. Patients who receive prostaglandin analogs, including VYZULTA, should be informed of the possibility of increased pigmentation, including permanent changes. The long-term effects of increased pigmentation are not known.

Iris color change may not be noticeable for several months to years. Typically, the brown pigmentation around the pupil spreads concentrically towards the periphery of the iris and the entire iris or parts of the iris become more brownish. Neither new nor freckles of the iris appear to be affected by treatment. While treatment with VYZULTA® (latanoprostene bunod ophthalmic solution), 0.024% can be continued in patients who develop noticeably increased iris pigmentation, these patients should be examined regularly [see Patient Counseling Information (17) in full Prescribing Information).

5.2 Eyelash Changes

VYZULTA may gradually change eyelashes and vellus hair in the treated eye. These changes usually include increased length, thickness, and the number of lashes or hairs. Eyelash changes are usually reversible upon discontinuation of treatment.

5.3 Intraocular Inflammation

VYZULTA should be used with caution in patients with a history of intraocular inflammation (iritis/uveitis) and should generally not be used in patients with active intraocular inflammation as it may exacerbate this condition.

5.4 Macular Edema

Macular edema, including cystoid macular edema, has been reported during treatment with prostaglandin analogs. VYZULTA should be used with caution in aphakic patients, in pseudophakic patients with a torn posterior lens capsule, or in patients with known risk factors for macular edema.

5.5 Bacterial Keratitis

There have been reports of bacterial keratitis associated with the use of multiple-dose containers of topical ophthalmic products. These containers had been inadvertently contaminated by patients who, in most cases, had a concurrent corneal disease or a disruption of the ocular epithelial surface.

5.6 Use with Contact Lens

Contact lenses should be removed prior to the administration of VYZULTA because this product contains benzalkonium chloride. Lenses may be reininserted 15 minutes after administration.

6 ADVERSE REACTIONS

The following adverse reactions are described in the Warnings and Precautions section: pigmentation (5.1), eyelash changes (5.2), intraocular inflammation (5.3), macular edema (5.4), bacterial keratitis (5.5), use with contact lens (5.6).

6.1 Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

VYZULTA was evaluated in 811 patients in 2 controlled clinical trials of up to 12 months duration. The most common ocular adverse reactions were observed in patients treated with latanoprostene bunod were: conjunctival hyperemia (6%), eye irritation (4%), eye pain (3%), and instillation site pain (2%). Approximately 0.6% of patients discontinued therapy due to ocular adverse reactions including ocular hyperemia, conjunctival irritation, eye irritation, eye pain, conjunctival edema, vision blurred, punctate keratopathy and foreign body sensation.

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Risk Summary

There are no available human data for the use of VYZULTA during pregnancy to inform any drug associated risks.

Latanoprostene bunod has caused miscarriages, abortion, and fetal harm in rabbits. Latanoprostene bunod was shown to be abortifacient and teratogenic when administered intravenously (IV) to pregnant rabbits at exposures ≥ 0.28 times the clinical dose. The clinical dose produced 100% embryofetal lethality. Structural abnormalities observed in rabbit fetuses included anomalies of the great vessels and aortic arch vessels, domed head, sternal and vertebral skeletal anomalies, limb hyperextension and malrotation, abdominal distension and edema. Latanoprostene bunod was not teratogenic in the rat when administered IV at 150 mcg/kg/day (87 times the clinical dose) [see Data].

The background risk of major birth defects and miscarriage for the indicated population is known. However, the background risk in the U.S. general population of major birth defects is 2 to 4%, and of miscarriage is 15 to 20%, of clinically recognized pregnancies.

8.2 Lactation

Risk Summary

There are no data on the presence of VYZULTA in human milk, the effects on the breastfed infant, or the effects on milk production. The developmental and health benefits of breastfeeding should be considered, along with the mother's clinical need for VYZULTA, and any potential adverse effects on the breastfed infant from VYZULTA.

8.3 Pediatric Use

Use in pediatric patients aged 16 years and younger is not recommended because of potential safety concerns related to increased pigmentation following long-term chronic use.

8.4 Geriatric Use

No overall clinical differences in safety or effectiveness have been observed between elderly and other adult patients.

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Latanoprostene bunod was not mutagenic in bacteria and did not induce micronucleus formation in the in vivo rat bone marrow micronucleus assay. Chromosomal aberrations were observed in vitro with human lymphocytes in the absence of metabolic activation.

Latanoprostene bunod has not been tested for carcinogenic activity in long-term animal studies. Latanoprost is a main metabolite of latanoprostene bunod. Exposure of rats and mice to latanoprost acid, resulting from oral dosing with latanoprost in lifetime non-breasted bioassays, was not carcinogenic.

Fertility studies have not been conducted with latanoprostene bunod. The potential to impact fertility can be partially characterized by exposure to latanoprost acid, a common metabolite of both latanoprostene bunod and latanoprost. Latanoprost acid has not been found to have any effect on male or female fertility in animal studies.

13.2 Animal Toxicology and/or Pharmacology

A 9-month toxicology study administered topical ocular doses of latanoprostene bunod to one eye of cynomolgus monkeys: control (vehicle only), one drop of 0.024% bid, one drop of 0.04% bid and two drops of 0.04% per dose, bid. The systemic exposures are equivalent to 4.2-fold, 7.9-fold, and 13.5-fold the clinical dose, respectively, on a body surface area basis (assuming 100% absorption). Microscopic evaluation of the lungs after 9 months observed pleural/subpleural chronic fibrosis/inflammation in the 0.04% dose male groups, with increasing incidence and severity compared to controls. Lung toxicity was not observed at the 0.024% dose. U.S. Patent Numbers: 7,273,946; 7,629,345; 7,910,767; 8,058,467.

VYZULTA is a trademark of Bausch & Lomb Incorporated or its affiliates.

© 2020 Bausch & Lomb Incorporated or its affiliates.

Distributed by:
Bausch + Lomb, a division of
Bausch Health US, LLC
Bridgewater, NJ 08807 USA
Based on 861203 (Folded), 861203 (Flat) S/2019
VZY.0109.USA.20 Issued: S/2020
explore DISCOVER connect

DISCOV*aerie* Live!
A destination for the eye care community – created for, and inspired by, you.
discoveraerielive.com
HAVE YOU TRIED?

SIMBRINZA®
(brinzolamide/brimonidine tartrate ophthalmic suspension)
1%/0.2%

Talk to your Alcon sales representative to find out more.